Simdax 2,5 mg/ml Konzentrat zur Herstellung einer Infusionslösung

1. BEZEICHNUNG DES ARZNEIMITTELS

Simdax 2,5 mg/ml, Konzentrat zur Herstellung einer Infusionslösung

2. QUALITATIVE UND QUANTITATIVE ZUSAMMENSETZUNG

Jeder ml des Konzentrates enthält 2,5 mg Levosimendan.

Eine Durchstechflasche mit 5 ml Lösung enthält 12,5 mg Levosimendan.

Sonstiger Bestandteil mit bekannter Wirkung: Alkohol.

Dieses Arzneimittel enthält 785 mg/ml, entsprechend 98 Vol.-% Alkohol.

Vollständige Auflistung der sonstigen Bestandteile, siehe Abschnitt 6.1.

3. DARREICHUNGSFORM

Konzentrat zur Herstellung einer Infusionslösung.

Das Konzentrat ist eine klare gelbe oder orangefarbene Lösung zur Verdünnung vor der Verabreichung.

4. KLINISCHE ANGABEN

4.1 Anwendungsgebiete

Simdax ist zur Kurzzeit-Behandlung bei akut dekompensierter schwerer chronischer Herzinsuffizienz (ADHF) indiziert, wenn eine konventionelle Therapie nicht ausreichend ist und in Fällen, wo die Verabreichung von Inotropika als geeignet betrachtet wird (siehe Abschnitt 5.1).

Simdax ist für die Behandlung von Erwachsenen bestimmt.

4.2 Dosierung und Art der Anwendung

Simdax dient nur zur Anwendung im Krankenhaus. Es sollte nur in Krankenhäusern verwendet werden, die über adäquate Überwachungsmöglichkeiten verfügen und auch Erfahrung im Umgang mit inotropen Substanzen haben.

Dosierung

Dosis und Behandlungsdauer sollten individuell entsprechend dem klinischen Zustand und Ansprechen des Patienten abgestimmt werden.

Die Behandlung sollte mit einer Initialdosis von 6-12 Mikrogramm/kg über einen Zeitraum von 10 Minuten beginnen, gefolgt von einer kontinuierlichen Infusion von 0,1 Mikrogramm/kg/min (siehe Abschnitt 5.1). Die niedrigere Initialdosis von 6 Mikrogramm/ kg wird für Patienten empfohlen, die eine gleichzeitige intravenöse Gabe eines Vasodilatators oder eines Inotropikums oder beides zu Beginn der Infusion erhalten. Höhere Initialdosen innerhalb dieses Bereiches rufen ein stärkeres hämodynamisches Ansprechen hervor, können aber mit einer vorübergehend höheren Inzidenz von Nebenwirkungen verbunden sein. Das Ansprechen des Patienten auf die Therapie sollte nach der Initialdosis oder innerhalb von 30 bis 60 Minuten nach Dosisanpassung, so wie klinisch indiziert, beurteilt werden. Bei überschießender Wirkung (Hypotonie, Tachykardie) kann die Infusionsrate auf 0,05 Mikrogramm/kg/min reduziert oder die Infusion abgebrochen werden (siehe Abschnitt 4.4). Wird die Initialdosis toleriert, und ist ein gesteigerter hämodynamischer Effekt notwendig, kann die Infusionsrate auf 0,2 Mikrogramm/kg/min erhöht werden.

Die empfohlene Infusionsdauer bei Patienten mit akuter Dekompensation einer schweren chronischen Herzinsuffizienz beträgt 24 Stunden. Es wurde kein Anzeichen einer Toleranzentwicklung oder eines Rebound-Phänomens nach Beendigung der Infusion von Simdax beobachtet. Nach Beendigung einer 24-Stunden-Infusion halten die hämodynamischen Effekte mindestens 24 Stunden an und können über bis zu 9 Tage beobachtet werden (siehe Abschnitt 4.4).

Erfahrungen über die wiederholte Verabreichung von Simdax liegen nur begrenzt vor. Erfahrungen über die gleichzeitige Gabe von vasoaktiven Substanzen, einschließlich inotroper Substanzen (mit Ausnahme von Digoxin) sind begrenzt. In den REVIVE (Randomized Multicenter Evaluation of Intravenous Levosimendan Efficacy)-Studien wurde eine geringere Initialdosis (6 Mikrogramm/kg) zu Beginn mit vasoaktiver Begleitmedikation verabreicht (siehe Abschnitte 4.4, 4.5 und 5.1).

Überwachung der Behandlung

Übereinstimmend mit der derzeitigen medizinischen Praxis muss die Behandlung unter EKG-Überwachung und Kontrolle von Herzfrequenz, Blutdruck und Urinausscheidung durchgeführt werden. Ein Monitoring dieser Parameter für mindestens 3 Tage nach dem Ende der Infusion oder bis der Patient klinisch stabil ist, wird empfohlen (siehe Abschnitt 4.4). Bei Patienten mit leicht bis mäßig beeinträchtigter Nierenoder Leberfunktion wird die Überwachung über mindestens 5 Tage empfohlen.

Besondere Patientengruppen

Ältere Patienten

Bei älteren Patienten ist keine Dosisanpassung notwendig.

Patienten mit beeinträchtigter Nierenfunktion

Bei Anwendung von Simdax bei Patienten mit leicht bis mäßig beeinträchtigter Nierenfunktion ist Vorsicht geboten. Simdax darf nicht bei Patienten mit schwer beeinträchtigter Nierenfunktion (Kreatinin-Clearance < 30 ml/min) verwendet werden (siehe Abschnitte 4.3, 4.4 und 5.2).

Patienten mit beeinträchtigter Leberfunktion

Bei Anwendung von Simdax bei Patienten mit leicht bis mäßig beeinträchtigter Leberfunktion ist Vorsicht geboten, obwohl eine Dosisanpassung für diese Patienten nicht notwendig erscheint. Simdax darf nicht bei Patienten mit schwer beeinträchtigter Leberfunktion verwendet werden (siehe Abschnitte 4.3, 4.4 und 5.2).

Kinder und Jugendliche

Die Sicherheit und Wirksamkeit von Simdax bei Kindern und Jugendlichen im Alter unter 18 Jahren ist bisher noch nicht erwiesen (siehe Abschnitte 4.4 und 5.2).

Art der Anwendung

Simdax muss vor der Anwendung verdünnt werden (siehe Abschnitt 6.6).

Die Infusion darf nur intravenös verabreicht werden und kann durch peripheren oder zentralen Zugang verabreicht werden. Die folgende Tabelle zeigt detaillierte Infusionsraten für die Initial- und die Erhaltungsdosis einer **0,05 mg/ml** Zubereitung der Simdax-Infusion:

Siehe Tabelle 1 auf Seite 2

Die folgende Tabelle zeigt detaillierte Infusionsraten für die Initialdosis und die Erhaltungsdosis einer **0,025 mg/ml** Zubereitung der Simdax-Infusion:

Siehe Tabelle 2 auf Seite 2

4.3 Gegenanzeigen

- Überempfindlichkeit gegen den Wirkstoff oder einen der in Abschnitt 6.1 genannten sonstigen Bestandteile.
- Schwere Hypotonie und Tachykardie (siehe Abschnitte 4.4. und 5.1).
- Signifikante mechanische Behinderungen, die die ventrikuläre Füllung, den ventrikulären Ausstrom oder beides beeinflussen.
- Schwer beeinträchtigte Nierenfunktion (Kreatinin-Clearance < 30 ml/min).
- Schwer beeinträchtigte Leberfunktion.
- Torsades de Pointes in der Anamnese.

4.4 Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung

Ein initial hämodynamischer Effekt von Levosimendan kann ein Abfall des systolischen und diastolischen Blutdrucks sein, deshalb soll Levosimendan nur mit Vorsicht bei Patienten mit einem niedrigen systolischen oder diastolischen Ausgangsblutdruck oder bei Patienten, die ein Risiko für eine hypotensive Episode aufweisen, verabreicht werden. Für diese Patientengruppe werden zurückhaltendere Dosierrichtlinien empfohlen. Ärzte sollen die Dosis und Therapiedauer dem Zustand und dem Therapieansprechen des Patienten anpassen (siehe Abschnitte 4.2, 4.5 und 5.1).

Schwere Hypovolämie sollte vor der Levosimendaninfusion korrigiert werden. Wenn ausgeprägte Änderungen des Blutdruckes und der Herzfrequenz beobachtet werden, sollte die Infusionsrate reduziert oder die Infusion abgebrochen werden.

Die genaue Dauer aller hämodynamischen Effekte wurde nicht bestimmt, jedoch halten die hämodynamischen Wirkungen im Allgemeinen 7 bis 10 Tage an. Dies ist zum Teil auf die Anwesenheit von aktiven Metaboliten zurückzuführen, die ihre maximalen Plasmakonzentrationen etwa 48 Stunden nach Beendigung der Infusion erreichen. Bis mindestens 4-5 Tage nach dem Ende der Infusion wird eine nicht-invasive Überwachung empfohlen. Es wird empfohlen, die Überwachung aufrechtzuerhalten, bis die Blutdrucksenkung ihr Maximum erreicht hat und der Blutdruck wieder beginnt zu steigen; dies kann länger als 5 Tage dauern, wenn Anzeichen einer anhaltenden Blutdrucksenkung auftreten, kann aber kürzer als 5 Tage sein, wenn der Patient klinisch stabil ist. Bei Patienten mit leicht bis mäßig beeinträchtigter Nieren- oder Leberfunktion kann eine längere Überwachung notwendig sein.

FACHINFORMATION (ZUSAMMENFASSUNG DER MERKMALE DES ARZNEIMITTELS)

Simdax 2,5 mg/ml Konzentrat zur Herstellung einer Infusionslösung

Tabelle 1 Infusionsraten für die Initial- und die Erhaltungsdosis einer **0,05 mg/ml** Zubereitung der Simdax-Infusion

Patienten- gewicht (kg)	Initialdosis wird mittels Infusion über 10 min mit der folgenden Infusionsrate (ml/h) verabreicht		Kontinuierliche Infusionsrate (ml/h)		
	Initialdosis 6 Mikro- gramm/kg	Initialdosis 12 Mikro- gramm/kg	0,05 Mikro- gramm/kg/ Minute	0,1 Mikro- gramm/kg/ Minute	0,2 Mikro- gramm/kg/ Minute
40	29	58	2	5	10
50	36	72	3	6	12
60	43	86	4	7	14
70	50	101	4	8	17
80	58	115	5	10	19
90	65	130	5	11	22
100	72	144	6	12	24
110	79	158	7	13	26
120	86	173	7	14	29

Tabelle 2 Infusionsraten für die Initial- und die Erhaltungsdosis einer **0,025 mg/ml** Zubereitung der Simdax-Infusion

Patienten- gewicht (kg)	Initialdosis wird mittels Infusion über 10 min mit der folgenden Infusionsrate (ml/h) verabreicht		Kontinuierliche Infusionsrate (ml/h)		
	Initialdosis 6 Mikro- gramm/kg	Initialdosis 12 Mikro- gramm/kg	0,05 Mikro- gramm/kg/ Minute	0,1 Mikro- gramm/kg/ Minute	0,2 Mikro- gramm/kg/ Minute
40	58	115	5	10	19
50	72	144	6	12	24
60	86	173	7	14	29
70	101	202	8	17	34
80	115	230	10	19	38
90	130	259	11	22	43
100	144	288	12	24	48
110	158	317	13	26	53
120	173	346	14	29	58

Bei Patienten mit leichter bis mäßiger Beeinträchtigung der Nierenfunktion soll Simdax nur mit Vorsicht gegeben werden. Es liegen nur begrenzte Daten zur Eliminierung der aktiven Metaboliten bei Patienten mit beeinträchtigter Nierenfunktion vor. Eine beeinträchtigte Nierenfunktion kann zu erhöhten Konzentrationen der aktiven Metaboliten führen, was zu einem stärkeren und verlängerten hämodynamischen Effekt führen kann (siehe Abschnitt 5.2).

Bei <u>Patienten mit leichter bis mäßiger Beeinträchtigung der Leberfunktion</u> soll Simdax nur mit Vorsicht gegeben werden. Eine beeinträchtigte Leberfunktion kann zu einer verlängerten Exposition mit dem aktiven Metaboliten führen, was in einem stärkeren und verlängerten hämodynamischen Effekt resultieren kann (siehe Abschnitt 5.2).

Eine Simdax-Infusion kann zu einer Abnahme des Serum-Kaliumspiegels führen. Daher sollten <u>niedrige Serum-Kaliumspiegel</u> vor Therapiebeginn mit Simdax korrigiert werden und während der Behandlung überwacht werden.

Wie bei anderen Arzneimitteln zur Behandlung der Herzinsuffizienz kann eine Verringerung von Hämoglobin und Hämatokrit auftreten. Besondere Vorsicht gilt für Patienten mit ischämischer Herzkrankheit und begleitender Anämie.

Eine Simdax-Infusion soll bei Patienten mit Tachykardie, Vorhofflimmern mit rascher ventrikulärer Überleitung oder potentiell lebensbedrohlichen Arrhythmien nur mit Vorsicht gegeben werden.

Es liegen nur begrenzte Erfahrungen mit wiederholter Verabreichung von Simdax vor.

Die Erfahrung mit der gleichzeitigen Verabreichung von vasoaktiven Substanzen, einschließlich inotropen Substanzen (mit Ausnahme von Digoxin) ist limitiert. Nutzen und Risiko sollten individuell für den jeweiligen Patienten bewertet werden.

Bei Patienten mit anhaltender koronarer Ischämie, verlängertem QTc-Intervall unabhängig von der Ätiologie oder bei gleichzeitiger Gabe von Arzneimitteln, die das QTc-Intervall verlängern, sollte Simdax nur mit Vorsicht und unter engmaschiger EKG-Überwachung gegeben werden (siehe Abschnitt 4.9). (QTc-Intervall: korrigiertes QT-Intervall)

Die Anwendung von Levosimendan bei <u>kardiogenem Schock</u> wurde nicht untersucht.

Über die Anwendung von Simdax bei folgenden Erkrankungen liegen keine Informationen vor: Restriktive Kardiomyopathie, hypertrophe Kardiomyopathie, schwere Mitralklappen-Insuffizienz, Myokardruptur,

Herzbeuteltamponade und rechtsventrikulärer Infarkt.

Simdax darf nicht bei Kindern angewendet werden, da es nur sehr geringe Erfahrungen in der Anwendung bei Kindern und Jugendlichen unter 18 Jahren gibt (siehe Abschnitt 5.2).

Begrenzte Erfahrungen mit Simdax liegen bei Patienten mit schwerer Herzinsuffizienz, die auf eine Herztransplantation warten, vor.

Dieses Arzneimittel enthält 3.925 mg Alkohol (wasserfreies Ethanol) in jeder 5 ml Durchstechflasche, entsprechend ca. 98 Vol.-%. Diese Menge entspricht 99,2 ml Bier oder 41,3 ml Wein. Ein gesundheitliches Risiko besteht u. a. bei Leberkranken, Alkoholkranken, Epileptikern, Patienten mit organischen Erkrankungen des Gehirns, Schwangeren, Stillenden und Kindern.

Die Wirkung anderer Arzneimittel kann durch den Alkohol in diesem Arzneimittel verändert werden.

Da dieses Arzneimittel im Allgemeinen langsam über 24 Stunden gegeben wird, können die Wirkungen von Ethanol weniger stark ausgeprägt sein.

4.5 Wechselwirkungen mit anderen Arzneimitteln und sonstige Wechselwirkungen

Übereinstimmend mit der geltenden medizinischen Praxis sollte Levosimendan nur mit Vorsicht in Kombination mit <u>anderen intravenös zu verabreichenden vasoaktiven Substanzen</u> gegeben werden, da es möglicherweise zu einem erhöhten Hypotonierisiko führt (siehe Abschnitt 4.4).

Bei einer Populationsanalyse von Patienten, die Digoxin und eine Simdax-Infusion erhielten, wurden keine pharmakokinetischen Wechselwirkungen beobachtet. Die Simdax-Infusion kann bei Patienten, die mit Betablockern behandelt werden, ohne Wirkungsverlust eingesetzt werden. Die gleichzeitige Gabe von Isosorbid-Mononitrat und Levosimendan bei gesunden Probanden ergab eine signifikante Verstärkung der orthostatischen hypotensiven Wirkung.

Levosimendan hat sich in vitro als Inhibitor von CYP2C8 erwiesen, und es kann daher nicht ausgeschlossen werden, dass Levosimendan die Exposition gleichzeitig verabreichter Arzneimittel erhöhen kann, die hauptsächlich durch CYP2C8 metabolisiert werden. Daher sollte die gleichzeitige Anwendung von Levosimendan mit empfindlichen CYP2C8-Substraten wie Loperamid, Pioglitazon, Repaglinid und Enzalutamid nach Möglichkeit vermieden werden.

4.6 Fertilität, Schwangerschaft und Stillzeit

Schwangerschaft

Es liegen keine Daten über den Einsatz von Levosimendan während der Schwangerschaft vor. Studien in Tieren haben eine Reproduktionstoxizität gezeigt (siehe Abschnitt 5.3). Die Anwendung von Simdax während der Schwangerschaft und bei Frauen im gebärfähigen Alter, die keine Verhütungsmethode anwenden, wird nicht empfohlen.

2 015021-49904-100

Simdax 2,5 mg/ml Konzentrat zur Herstellung einer Infusionslösung

Stillzeit

Informationen aus der Anwendung nach der Markteinführung bei stillenden Frauen deuten darauf hin, dass die aktiven Metaboliten von Levosimendan OR-1896 und OR-1855 in die Muttermilch übertreten, und diese wurden mindestens 14 Tage nach Beginn der 24-stündigen Levosimendan-Infusion in der Milch nachgewiesen. Frauen, die Levosimendan erhalten, sollten nicht stillen, um mögliche kardiovaskuläre Nebenwirkungen beim Säugling zu vermeiden.

Fertilität

Studien in Tieren haben eine Reproduktionstoxizität gezeigt (siehe Abschnitt 5.3).

4.7 Auswirkungen auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen

Nicht zutreffend.

4.8 Nebenwirkungen

In placebokontrollierten klinischen Studien für die akut dekompensierte Herzinsuffizienz (REVIVE [Randomized Multicenter Evaluation of Intravenous Levosimendan Efficacy] Programm) kam es bei 53 % der Patienten zu Nebenwirkungen, die häufigsten davon waren ventrikuläre Tachykardien, Hypotonie und Kopfschmerzen.

In einer Dobutamin-kontrollierten klinischen Studie für ADHF (SURVIVE [Survival of Patients with Acute Heart Failure in Need of Intravenous Inotropic Support]) kam es bei 18% der Patienten zu Nebenwirkungen, die häufigsten davon waren ventrikuläre Tachykardien, Vorhofflimmern, Hypotonie, ventrikuläre Extrasystolen, Tachykardie und Kopfschmerzen.

Die folgende Tabelle beschreibt die Nebenwirkungen, die bei 1 % der Patienten oder mehr während der klinischen Studien REVIVE I, REVIVE II, SURVIVE, LIDO [Levosimendan Infusion versus Dobutamine], RUSSLAN [Randomized Study on Safety and Effectiveness of Levosimendan in Patients with Left Ventricular Failure after an Acute Myocardial Infarct], 300105 und 3001024 beobachtet wurden. Falls die Inzidenz eines einzelnen Ereignisses in einer individuellen Studie höher war als im Durchschnitt der anderen Studien, wurde die höhere Inzidenz in der Tabelle angegeben.

Unerwünschte Ereignisse, die möglicherweise auf die Verabreichung von Levosimendan zurückzuführen sind, sind nach Organsystem und Häufigkeit angegeben, mit der folgenden Konvention:

sehr häufig (\geq 1/10), häufig (\geq 1/100, < 1/10), gelegentlich (\geq 1/1.000, < 1/100), selten (\geq 1/10.000, < 1/1.000), sehr selten (< 1/10.000), nicht bekannt (Häufigkeit auf Grundlage der verfügbaren Daten nicht abschätzbar).

Siehe Tabelle 3

Unerwünschte Wirkungen nach Markteinführung:

Nach der Markteinführung wurde über das Auftreten von Kammerflimmern bei Patienten nach Simdax-Verabreichung berichtet.

Tabelle 3: Zusammenfassung der unerwünschten Wirkungen von Levosimendan, die in klinischen Studien und nach der Markteinführung beobachtet wurden

Systemorganklasse	Häufigkeit	Bevorzugte Bezeichnung	
Erkrankungen des Immunsystems	nicht bekannt	Überempfindlichkeit	
Stoffwechsel- und Ernährungs- störungen	häufig	Hypokaliämie	
Psychiatrische Erkrankungen	häufig	Schlaflosigkeit	
Erkrankungen des Nervensystems	sehr häufig	Kopfschmerzen	
	häufig	Schwindel	
Herzerkrankungen	sehr häufig	Ventrikuläre Tachykardie	
	häufig	Vorhofflimmern Tachykardie Ventrikuläre Extrasystolen Herzversagen Myokardischämie Extrasystolen	
Gefäßerkrankungen	sehr häufig	Hypotonie	
Erkrankungen des Gastrointestinal- trakts	häufig	Übelkeit Verstopfung Diarrhoe Erbrechen	
Untersuchungen	häufig	Erniedrigte Hämoglobinwerte	

Meldung des Verdachts auf Nebenwirkungen

Die Meldung des Verdachts auf Nebenwirkungen nach der Zulassung ist von großer Wichtigkeit. Sie ermöglicht eine kontinuierliche Überwachung des Nutzen-Risiko-Verhältnisses des Arzneimittels.

Angehörige von Gesundheitsberufen sind aufgefordert, jeden Verdachtsfall einer Nebenwirkung dem

Bundesinstitut für Arzneimittel und Medizinprodukte Abt. Pharmakovigilanz Kurt-Georg-Kiesinger-Allee 3 D-53175 Bonn Website: www.bfarm.de anzuzeigen.

4.9 Überdosierung

Überdosierung von Simdax kann zu Hypotonie und Tachykardie führen. In klinischen Studien mit Levosimendan wurde Hypotonie erfolgreich mit Vasopressoren behandelt (z.B. Dopamin bei Patienten mit dekompensierter Herzinsuffizienz und Noradrenalin bei Patienten nach Herzoperation). Eine exzessive Abnahme der Füllungsdrucke des Herzens kann die Wirkung von Simdax limitieren und kann mit Infusionslösungen behandelt werden. Hohe Dosierungen (≥ 0,4 Mikrogramm/kg/min) und eine Infusionsdauer über 24 Stunden erhöhen die Herzfrequenz und sind manchmal mit einer Verlängerung des QTc-Intervalls verbunden. Im Falle einer Überdosierung von Simdax sollten eine kontinuierliche EKG-Überwachung, wiederholte Messungen der Serumelektrolyte und eine invasive hämodynamische Überwachung durchgeführt werden. Eine Überdosierung von Simdax führt zu erhöhten Plasmakonzentrationen des aktiven Metaboliten, was zu einer ausgeprägteren und verlängerten Wirkung auf die Herzfrequenz führen kann, die eine entsprechende Verlängerung des Beobachtungzeitraums erfordert.

5. PHARMAKOLOGISCHE EIGEN-SCHAFTEN

5.1 Pharmakodynamische Eigenschaften

Pharmakotherapeutische Gruppe: Andere Kardiostimulanzien, ATC-Code: C01CX08.

Pharmakodynamische Effekte

Levosimendan erhöht die Calciumsensitivität der kontraktilen Proteine durch die calciumabhängige Bindung an das kardiale Troponin C. Levosimendan erhöht die Kontraktionskraft, aber beeinträchtigt nicht die ventrikuläre Entspannung. Zusätzlich öffnet Levosimendan ATP-sensitive Kaliumkanäle in der glatten Gefäßmuskulatur, was zu einer Vasodilatation der systemischen und koronaren arteriellen Widerstandgefäße und der systemischen venösen Kapazitätsgefäße führt. Levosimendan ist in vitro ein selektiver Phosphodiesterase-III-Inhibitor. Die klinische Relevanz dieser Wirkung ist bei therapeutischen Konzentrationen unklar. Bei Patienten mit Herzinsuffizienz resultiert aus der positiv inotropen und vasodilatorischen Aktivität von Levosimendan eine gesteigerte Kontraktionskraft und eine Reduktion von Vor- und Nachlast, ohne dass jedoch die diastolische Funktion negativ beeinflusst wird. Levosimendan aktiviert ein "stunned" Myokard bei Patienten nach PTCA (perkutane transluminale koronare Angioplastie) oder Thrombolyse.

Hämodynamische Studien bei Gesunden und bei Patienten mit stabiler und instabiler Herzinsuffizienz zeigten einen dosisabhängigen Effekt von Levosimendan nach intravenöser Verabreichung einer Initialdosis (3 Mikrogramm/kg bis 24 Mikrogramm/kg) und kontinuierlicher Infusion (0,05 bis 0,2 Mikrogramm/kg pro Minute). Im Vergleich zu Placebo steigerte Levosimendan die Auswurfleistung, Schlagvolumen, Auswurffraktion und Herzfrequenz und reduzierte den systolischen Blutdruck, den diastolischen Blutdruck, den rechtsateriellen Druck und den peripheren Gefäßwiderstand.

FACHINFORMATION (ZUSAMMENFASSUNG DER MERKMALE DES ARZNEIMITTELS)

Simdax 2,5 mg/ml Konzentrat zur Herstellung einer Infusionslösung

Die Simdax-Infusion erhöht den koronaren Blutfluss bei Patienten in der Rehabilitation nach Koronar-Operationen und verbessert die myokardiale Durchblutung bei Patienten mit Herzinsuffizienz. Diese Vorteile werden ohne signifikante Erhöhung des myokardialen Sauerstoffverbrauchs erreicht. Die Behandlung mit einer Simdax-Infusion führt zu einer signifikanten Abnahme des Endothelin-1-Plasmaspiegels bei Patienten mit dekompensierter Herzinsuffizienz. Die Katecholamin-Plasmaspiegel werden unter Einhaltung der empfohlenen Infusionsraten nicht erhöht.

Klinische Studien bei akuter Herzinsuffizienz

Levosimendan wurde in klinischen Studien bei mehr als 2.800 Patienten mit Herzinsuffizienz bewertet. Die Wirksamkeit und Sicherheit von Levosimendan wurde in der Behandlung der ADHF in den folgenden randomisierten, doppelblinden, multinationalen klinischen Studien bestimmt:

REVIVE Programm

REVIVE I

In einer doppelblinden, placebokontrollierten Pilotstudie an 100 Patienten mit ADHF, wurde gegenüber der placebokontrollierten Gruppe ein günstiges Ansprechen der Patienten beobachtet, die zusätzlich zur Standardtherapie eine 24-stündige Levosimendan-Infusion erhielten. Gemessen wurde dies mittels eines zusammengesetzten klinischen Endpunktes.

REVIVE II

Eine doppelblinde, placebokontrollierte Pivotalstudie an 600 Patienten, die eine 10-minütige Initialdosis von 6–12 Mikrogramm/kg gefolgt von einer im Protokoll definierten schrittweisen Titration der Levosimendandosis zu 0,05–0,2 Mikrogramm/kg/Minute für bis zu 24 Stunden erhielten, führte zu einer Verbesserung des klinischen Zustands bei Patienten mit ADHF, welche auch nach intravenöser Diuretikatherapie weiterhin Dyspnoe aufwiesen.

Das klinische Programm REVIVE wurde zum Vergleich der Wirksamkeit von Levosimendan plus Standardtherapie zu Placebo plus Standardtherapie in der Behandlung der ADHF konzipiert.

Gemäß den Einschlusskriterien wurden Patienten mit ADHF, einer linksventrikulären Auswurffraktion von weniger oder gleich 35 % innerhalb der letzten 12 Monate und Dyspnoe in Ruhe aufgenommen. Alle Basistherapien mit Ausnahme der Verabreichung von intravenösem Milrinon waren zugelassen. Ausschlusskriterien umfassten schwere Verengungen des ventrikulären Auswurfsystems, kardialer Schock, ein systolischer Blutdruck ≤ 90 mmHg oder eine Herzfrequenz ≥ 120 Schläge pro Minute (über 5 Minuten anhaltend) oder der Bedarf einer mechanischen Beatmung.

Die Ergebnisse des primären Endpunktes demonstrierten eine Verbesserung bei einem größeren Anteil der Patienten und eine Verschlechterung bei einem geringeren Anteil der Patienten (p-Wert = 0,015) gemessen an dem zusammengesetzten klinischen Endpunkt, die eine anhaltende Verbesserung des klinischen Zustandsbildes an

den 3 Zeitpunkten: 6 Stunden, 24 Stunden und 5 Tage zeigte. B-Typ Natriuretische Peptid-Werte waren gegenüber Placebo und Standardtherapie nach 24 Stunden und 5 Tage hindurch signifikant reduziert (p-Wert = 0,001).

Die Levosimendan-Gruppe hatte eine leicht erhöhte, allerdings nicht statistisch signifikante Todesrate im Vergleich zur Kontrollgruppe nach 90 Tagen (15 % versus 12 %). Eine nachträgliche Analyse identifizierte zu Beginn einen systolischen Blutdruck < 100 mmHg oder einen diastolischen Blutdruck < 60 mmHg als Faktoren für ein erhöhtes Mortalitätsrisiko.

SURVIVE

Eine doppelt-blinde, doppelt-dummy, multizentrische Studie mit Parallelgruppendesign verglich Levosimendan mit Dobutamin und evaluierte die 180 Tage Mortalität bei 1.327 Patienten mit ADHF, welche eine zusätzliche Therapie nach schlechtem Ansprechen auf intravenöse Diuretika oder Vasodilatoren benötigten. Das Patientenkollektiv war im Allgemeinen ähnlich den Patienten der REVIVE II-Studie, allerdings wurden Patienten ohne vorangegangene Herzinsuffizienz in der Anamnese (z.B. akuter Myokardinfarkt) und Patienten, die mechanische Beatmung benötigten, eingeschlossen. Etwa 90 % der Patienten wurden aufgrund von Ruhedyspnoe in die Studie aufaenommen.

Die Ergebnisse von SURVIVE konnten keinen statistisch signifikanten Unterschied in der 180 Tage Mortalität von Levosimendan gegenüber Dobutamin zeigen {Hazard Ratio = 0,91 (95 % CI [0,74; 1,13] p-Wert = 0,401)}, allerdings zeigte sich ein numerischer Vorteil in der Mortalität am Tag 5 (4 % Levosimendan versus 6 % Dobutamin) für Levosimendan. Dieser Vorteil setzte sich über einen 31-tägigen Zeitraum fort (12% Levosimendan versus 14% Dobutamin) und war am markantesten bei denjenigen Patienten, die Betablocker als Ausgangstherapie erhielten. In beiden Behandlungsgruppen zeigte sich eine höhere Mortalitätsrate bei Patienten mit niedrigem Ausgangsblutdruck im Vergleich zu denjenigen mit höherem Ausgangsblutdruck.

LIDO

Levosimendan zeigte einen dosisabhängigen Anstieg der Auswurfleistung und des Schlagvolumens und eine dosisabhängige Verminderung des pulmonalkapillären Verschlussdruckes, des mittleren arteriellen Drucks und des gesamten peripheren Widerstandes.

In einer doppelblinden multizentrischen Studie erhielten 203 Patienten mit schwerer Herzinsuffizienz mit niedrigem Cardiac Output (Auswurffraktion ≤ 0,35, Cardiac-Index < 2,5 l/min/m², pulmonalkapillärer Verschlussdruck (PCWP) > 15 mmHg) und Bedarf an inotroper Zusatzbehandlung Levosimendan (Initialdosis 24 Mikrogramm/kg über 10 Minuten, gefolgt von einer kontinuierlichen Infusion von 0,1−0,2 Mikrogramm/kg/min) oder Dobutamin (5−10 Mikrogramm/kg/min) über 24 Stunden. In 47% war eine Ischämie die Ursache der Herzinsuffizienz und in 45% eine idiopathische dilatative Kardiomyopathie. 76% der

Patienten hatten eine Ruhe-Dyspnoe. Die Hauptausschlusskriterien waren ein systolischer Blutdruck unter 90 mmHg und eine Herzfrequenz über 120 Schläge pro Minute. Der primäre Endpunkt war eine Erhöhung des Cardiac Output ≥ 30 % und eine gleichzeitige Abnahme des pulmonalkapillären Verschlussdrucks von ≥ 25 % nach 24 Stunden. Dies wurde bei 28 % der mit Levosimendan behandelten Patienten erreicht, verglichen mit 15 % nach einer Dobutamin-Behandlung (p = 0,025). Nach einer Behandlung mit Levosimendan hatten 68% der Patienten mit Symptomatik eine Verbesserung ihrer Dyspnoe-Scores, verglichen mit 59% nach einer Dobutamin-Behandlung. Die Verbesserung der Müdigkeits-Scores betrugen 63 % und 47 % nach einer Levosimendan- beziehungsweise einer Dobutamin-Behandlung. Alles in allem betrug die Mortalität nach 31 Tagen bei den mit Levosimendan behandelten Patienten 7,8% und 17% bei den mit Dobutamin behandelten Patienten.

RUSSLAN

In einer weiteren doppelblinden multizentrischen Studie, die primär durchgeführt wurde, um die Unbedenklichkeit zu evaluieren, wurden 504 Patienten mit dekompensierter Herzinsuffizienz nach akutem Myokardinfarkt und Bedarf an inotroper Behandlung mit Levosimendan oder Placebo über 6 Stunden behandelt. Es gab keine signifikanten Unterschiede in der Inzidenz von Hypotonie und Ischämie zwischen den beiden Behandlungsgruppen.

In einer retrospektiven Auswertung der beiden Studien LIDO und RUSSLAN, wurde kein negativer Effekt auf die Überlebensrate bis zu 6 Monate beobachtet.

Klinische Studien in der Herzchirurgie Zwei der größten placebokontrollierten Studien werden unten dargestellt.

LEVO-CTS

In einer doppelblinden placebokontrollierten Studie mit 882 Patienten, die eine Herzoperation erhielten, wurde Levosimendan (0,2 µg/kg/min für 60 min, gefolgt von 0,1 µg/kg/min für 23 h) bei Induktion der Anästhesie bei Patienten mit einer präoperativen linksventrikulären Auswurffraktion von weniger oder gleich 35 % gestartet. Die Studie verfehlte das Erreichen des primären Endpunkts. Der primäre Vierkomponentenendpunkt (Tod bis Tag 30, Nierenersatztherapie bis Tag 30, perioperativer Myokardinfarkt bis Tag 5 oder Anwendung eines mechanischen Herzunterstützungssystems bis Tag 5) trat bei 24,5% in der Levosimendangruppe und bei 24,5% in der Placebogruppe auf (angepasstes Quotenverhältnis/Odds-Ratio (OR), 1,00; 99 % KI, 0,66 bis 1,54). Der primäre Zweikomponentenendpunkt (Tod bis Tag 30 oder Anwendung eines mechanischen Herzunterstützungssystems bis Tag 5) trat bei 13,1% der Levosimendangruppe und bei 11,4% der Placebogruppe auf (angepasstes OR, 1,18; 96 % KI, 0,76 bis 1,82). Bis Tag 90 traten bei 4,7 % der Patienten in der Levosimendangruppe Todesfälle auf und bei 7,1 % in der Placebogruppe (unbereinigte Hazard Ratio, 0,64; 95 % KI, 0,37 bis 1,13)). Hypotonie wurde bei 36 % in der

4 015021-49904-100

Simdax 2,5 mg/ml Konzentrat zur Herstellung einer Infusionslösung

Levosimendangruppe und bei 33 %, in der Placebogruppe beobachtet. Vorhofflimmern wurde bei 38 % in der Levosimendangruppe und bei 33 % in der Placebogruppe gesehen.

LICORN

Eine Investigator-initiierte, multizentrische, randomisierte, placebokontrollierte, doppelblinde klinische Studie schloss 336 erwachsene Patienten mit einer LVEF ≤ 40 %, für die eine Koronararterien-Bypass-Transplantation geplant war (mit oder ohne Klappenoperation), ein. Eine Levosimendan-Infusion 0,1 µg/kg/min wurde ohne Aufsättigungsdosis für 24 Stunden nach Induktion der Anästhesie verabreicht. Der primäre Endpunkt war eine Mischung aus einer Katecholamininfusion, die über 48 Stunden anhielt, der Bedarf einer mechanischen Kreislaufunterstützung in der postoperativen Phase oder der Bedarf einer Nierenersatztherapie. Der primäre Endpunkt trat bei 52 % der Levosimendanpatienten und bei 61 % der Placebopatienten auf (absolute Risikodifferenz, -7%; 95% KI, -17% bis 3%). Die geschätzte 10% Risikoreduktion bezog sich hauptsächlich auf den Bedarf einer Katecholamininfusion bei 48 h. Die Mortalität zum Tag 80 betrug 8% in der Levosimendangruppe und 10% in der Placebogruppe. Hypotonie wurde bei 57 % in der Levosimendangruppe und bei 48 % in der Placebogruppe gesehen. Vorhofflimmern wurde bei 50 % in der Levosimendangruppe und bei 40 % in der Placebogruppe gesehen.

5.2 Pharmakokinetische Eigenschaften

Verteilung

Bei intravenöser Verabreichung stellen sich innerhalb einer Stunde angemessene Blutspiegel des Wirkstoffs ein. Der Steady State wird bei konstanter Infusionsrate innerhalb von fünf Stunden erreicht

Das Verteilungsvolumen von Levosimendan (Vss) liegt bei ungefähr 0,2 l/kg. Levosimendan wird zu 97–98% an Plasmaproteine gebunden, hauptsächlich an Albumin. Die durchschnittlichen Proteinbindungswerte von OR-1855 und OR-1896 (aktive Metaboliten) bei Patienten waren 39% und 42%.

Biotransformation

Levosimendan wird vollständig metabolisiert und vernachlässigbare Mengen an unveränderter Ausgangssubstanz werden über Urin und Faezes ausgeschieden. Levosimendan wird in erster Linie über die Konjugation zu inaktivem zyklischem oder N-acetyliertem Cysteinylglycin und Cysteinkonjugaten metabolisiert. Ungefähr 5 % der Levosimendan-Dosis werden im Darm durch Reduktion zu aktiven Metaboliten metabolisiert: Aminophenylpyridazinon (OR-1855), das nach Reabsorption durch N-Acetyl-Transferase zu OR-1896 metabolisiert wird. Das Acetylierungsniveau ist genetisch determiniert. Bei schnellen Acetylierern ist die Konzentration des Metaboliten OR-1896 leicht höher als bei langsamen Acetylierern. Jedoch hat dies keinen Einfluss auf die klinischen hämodynamischen Effekte bei den empfohlenen Dosierungen.

Die einzigen signifikant nachweisbaren Metaboliten nach Verabreichung von Levosi-

mendan sind OR-1855 und OR-1896 bei systemischer Zirkulation. Diese Metaboliten erreichen in vivo ein Gleichgewicht als Ergebnis von Acetylierungs- und Deacetylierungsschritten im Metabolismus, die von N-Acetyltransferase-2, einem polymorphen Enzym, geregelt werden. Bei langsamen Acetylierern herrscht OR-1855 vor, bei schnellen Acetylierern hingegen OR-1896. In Summe ist die Exposition an beiden Metaboliten ähnlich zwischen langsamen und schnellen Acetylierern, und es aibt keinen Unterschied hinsichtlich hämodynamischer Effekte zwischen den beiden Gruppen. Die verlängerten hämodynamischen Effekte (diese können bis zu 7-9 Tage nach Beendigung der 24-Stunden-Levosimendan-Infusion andauern) sind auf diese Metaboliten zurückzuführen.

In vitro Studien haben gezeigt, dass Levosimendan sowie seine Metaboliten OR-1855 und OR-1896 bei Konzentrationen, die bei der angegebenen Dosis erreicht werden, keinen inhibitorischen Effekt auf CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP2E1 oder CYP3A4 haben. Zusätzlich behindert Levosimendan CYP1A1 nicht und weder OR-1855 noch OR-1896 behindern CYP2C8 oder CYP2C9. Levosimendan hat sich in vitro als Inhibitor von CYP2C8 erwiesen (siehe Abschnitt 4.5). Die Ergebnisse Arzneimittelwechselwirkungsstudien beim Menschen mit Warfarin, Felodipin und Itraconazol bestätigten, dass Levosimendan keine inhibitorischen Effekte auf CYP3A4 oder CYP2C9 hat; auch der Metabolismus von Levosimendan wird von CYP3A-Inhibitoren nicht beeinträchtigt.

Elimination

Die Clearance von Levosimendan beträgt etwa 3,0 ml/min/kg und die Halbwertszeit etwa 1 Stunde. 54 % der Levosimendan-Dosis werden über den Urin und 44 % über die Faezes nahezu vollständig in Form inaktiver Konjugate ausgeschieden. Mehr als 95% der Dosis wird innerhalb einer Woche ausgeschieden. Vernachlässigbare Mengen (< 0,05 % der Dosis) werden in nicht metabolisierter Form im Urin ausgeschieden. Die nachrangigen Metaboliten OR-1855 und OR-1896 (ca. 5 % der Levosimendan-Dosis) werden langsam gebildet und aus dem Kreislauf ausgeschieden. Die maximale Plasmakonzentration der aktiven Metaboliten von Levosimendan, OR-1855 und OR-1896, wird etwa 2 Tage nach Beendigung der Levosimendan-Infusion erreicht. Die Halbwertszeiten der Metaboliten betragen ungefähr 75 bis 80 Stunden. OR-1855 und OR-1896 sind einer Konjugation oder renalen Filtration ausgesetzt und werden vorwiegend im Urin ausgeschieden.

Linearität/Nicht-Linearität

Die pharmakokinetischen Eigenschaften von Levosimendan sind im Bereich therapeutischer Dosierungen zwischen 0,05 und 0,2 Mikrogramm/kg/min linear.

Spezielle Patientengruppen

Kinder und Jugendliche:

Levosimendan darf bei Kindern und Jugendlichen nicht angewendet werden (siehe Abschnitt 4.4).

Begrenzte Daten zeigen, dass die pharmakokinetischen Eigenschaften von Levosimendan nach einer Einzeldosis bei Kindern (Alter 3 Monate bis 6 Jahre) ähnlich wie bei Erwachsenen sind. Die pharmakokinetischen Eigenschaften des aktiven Metaboliten wurden bei Kindern nicht untersucht.

Beeinträchtigung der Nierenfunktion:

Die pharmakokinetischen Eigenschaften von Levosimendan wurden bei Patienten mit unterschiedlichem Grad der Nierenerkrankung untersucht, die keine Herzinsuffizienz hatten. Die Exposition mit Levosimendan war bei Patienten mit leichter bis mäßiger Nierenerkrankung und bei Patienten mit Hämodialyse ähnlich, während die Exposition mit Levosimendan bei Patienten mit schwerer Nierenerkrankung etwas niedriger sein kann.

Im Vergleich zu gesunden Probanden schien die ungebundene Fraktion von Levosimendan etwas erhöht zu sein, und die AUCs der Metaboliten (OR-1855 und OR-1896) waren bei Patienten mit schwerer Nierenerkrankung und bei Patienten mit Hämodialyse um bis zu 170% höher. Die Effekte von leichter und mäßig beeinträchtigter Nierenfunktion auf die Pharmakokinetik von OR-1855 und OR-1896 sind voraussichtlich geringer als die bei Patienten mit schwerer Nierenerkrankung.

Levosimendan ist nicht dialysierbar. Obwohl OR-1855 und OR-1896 dialysierbar sind, sind die Dialyseclearances niedrig (ca. 8-23 ml/min) und der Netto-Effekt einer 4-h-Dialyse-Sitzung auf die gesamte Belastung mit diesen Metaboliten ist klein.

Beeinträchtigung der Leberfunktion:

Hinsichtlich der Pharmakokinetik oder Proteinbindung von Levosimendan wurden keine Unterschiede zwischen Patienten mit leichter oder mäßiger Zirrhose versus gesunden Probanden gefunden. Die pharmakokinetischen Eigenschaften von Levosimendan, OR-1855 und OR-1896 sind zwischen gesunden Probanden und Patienten mit mäßig beeinträchtigter Leberfunktion (Child-Pugh Class B) ähnlich, mit Ausnahme der Eliminationshalbwertszeit von OR-1855 und OR-1896, die bei Patienten mit mäßig beeinträchtigter Leberfunktion etwas verzögert ist.

Eine Populationsanalyse zeigte keine Beeinflussung der pharmakokinetischen Eigenschaften durch Alter, ethnische Herkunft oder Geschlecht. Die gleiche Analyse ergab jedoch eine Abhängigkeit des Verteilungsvolumens und der Gesamtclearance vom Körpergewicht.

5.3 Präklinische Daten zur Sicherheit

Die üblichen Studien zur allgemeinen Toxizität und Genotoxizität ergaben kein spezielles Risiko für den Menschen bei Kurzzeit-Anwendung.

In Tierversuchen war Levosimendan nicht teratogen, es verursachte jedoch eine allgemeine Verringerung der Ossifikation bei Ratten- und Kaninchenfoeten mit anormaler Entwicklung des Supraokzipital-Knochens beim Kaninchen. Bei Gabe vor und während der frühen Trächtigkeit verringerte Levosimendan die Fruchtbarkeit (verringerte Zahl der Gelbkörper und der Implantationen) und zeigte eine Entwicklungstoxizität

FACHINFORMATION (ZUSAMMENFASSUNG DER MERKMALE DES ARZNEIMITTELS)

Simdax 2,5 mg/ml Konzentrat zur Herstellung einer Infusionslösung

(verringerte die Jungen pro Wurf und erhöhte die Zahl der frühen Resorptionen und der Postimplantationsverluste) bei weiblichen Ratten. Diese Effekte wurden bei Spiegeln, die einer klinischen Exposition entsprechen, beobachtet.

In Tierversuchen wurde Levosimendan in der Muttermilch nachgewiesen.

6. PHARMAZEUTISCHE ANGABEN

6.1 Liste der sonstigen Bestandteile

Povidon K 12, pyrogenfrei Citronensäure Ethanol

6.2 Inkompatibilitäten

Das Arzneimittel darf, außer mit den unter Abschnitt 6.6 aufgeführten, nicht mit anderen Arzneimitteln oder Lösungsmitteln gemischt werden.

6.3 Dauer der Haltbarkeit

Durchstechflaschen mit Chlorbutyl-Gummiverschluss: 3 Jahre

Durchstechflaschen mit Brombutyl-Gummiverschluss: 2 Jahre

Nach Verdünnung

Chemische und physikalische Stabilität wurden bei 25°C für 24 Stunden nachgewiesen.

Vom mikrobiologischen Standpunkt aus betrachtet, sollte das Produkt sofort verwendet werden. Bei nicht sofortiger Verwendung ist der Anwender verantwortlich für die Aufbewahrungsdauer und Lagerbedingungen, die normalerweise nicht länger als 24 Stunden bei 2°C bis 8°C sein sollten, es sei denn, dass die Verdünnung unter kontrollierten und validierten aseptischen Bedingungen stattgefunden hat. Lagerung und Verwendungszeit nach Verdünnung sollten 24 Stunden nie überschreiten.

6.4 Besondere Vorsichtsmaßnahmen für die Aufbewahrung

Im Kühlschrank lagern (2°C-8°C). Nicht einfrieren.

Die Farbe des Konzentrats kann sich während der Lagerung zu orange verändern, es tritt jedoch kein Wirkungsverlust auf und das Produkt kann bei sachgemäßer Lagerung bis zu dem angegebenen Verfalldatum verwendet werden.

Aufbewahrungsbedingungen nach Verdünnung des Arzneimittels, siehe Abschnitt 6.3.

6.5 Art und Inhalt des Behältnisses

- 8 ml Durchstechflasche aus Glas Typ I
- Chlorbutyl- oder Brombutyl-Gummiverschluss mit Fluorpolymer-Überzug

Packungsgrößen:

1 Durchstechflasche zu 5 ml mit Chlorbutyl- oder Brombutyl-Gummiverschluss.

6.6 Besondere Vorsichtsmaßnahmen für die Beseitigung und sonstige Hinweise zur Handhabung

Simdax 2,5 mg/ml, Konzentrat zur Herstellung einer Infusionslösung ist nur zum einmaligen Gebrauch bestimmt. Wie alle

Parenteralia sollte die verdünnte Lösung vor der Verabreichung visuell auf Niederschlag und Farbveränderung kontrolliert

Simdax 2,5 mg/ml Konzentrat zur Herstellung einer Infusionslösung sollte, wie unten angegeben, nicht zu einer höheren Konzentration als 0,05 mg/ml verdünnt werden, da es sonst zu Opaleszenz und Ausfällung kommen kann.

Zur Herstellung einer Infusionslösung von 0,025 mg/ml werden 5 ml Simdax 2,5 mg/ml Konzentrat mit 500 ml einer 5%igen Glukoselösung gemischt.

Zur Herstellung einer Infusionslösung von 0,05 mg/ml werden 10 ml Simdax 2,5 mg/ml Konzentrat mit 500 ml einer 5%igen Glukoselösung gemischt.

Die folgenden Arzneimittel können gleichzeitig mit Simdax in miteinander verbundenen intravenösen Systemen gegeben werden:

- Furosemid 10 mg/ml
- Digoxin 0,25 mg/ml
- Glycerintrinitrat 0,1 mg/ml

Nicht verwendetes Arzneimittel oder Abfallmaterial ist entsprechend den nationalen Anforderungen zu beseitigen.

7. INHABER DER ZULASSUNG

Orion Corporation Orionintie 1 02200 Espoo Finnland

8. ZULASSUNGSNUMMER

88995.00.00

9. DATUM DER ERTEILUNG DER ZULASSUNG/VERLÄNGERUNG **DER ZULASSUNG**

14.11.2013/28.05.2018

10. STAND DER INFORMATION

August 2025

11. VERKAUFSABGRENZUNG

Verschreibungspflichtig

Rote Liste Service GmbH www.fachinfo.de

Mainzer Landstraße 55 60329 Frankfurt